131
Views
4
CrossRef citations to date
0
Altmetric
Articles

Bioaccumulation in Miscanthus sacchariflorus grown on cadmium-contaminated sediments: a comparative study between submerged and non-submerged environments

, , ORCID Icon, , &
Pages 240-245 | Published online: 18 Jan 2019
 

Abstract

Bioaccumulation of heavy metals in aquatic plants is significantly affected by hydrological regime and therefore the accumulation and translocation of cadmium in five organs—panicle, leaf, stem, root, and bud—of an emergent plant (Miscanthus sacchariflorus) were compared between the submerged environment and non-submerged environment. In the submerged condition, the cadmium concentration was higher in the panicle and leaf than in the stem, root, and bud. Cadmium concentration in the root exhibited a positive regression with cadmium concentration in the sediment. However, cadmium concentration in the panicle, leaf, stem, and bud exhibited no significant regression with cadmium concentration in the sediment. In the non-submerged environment, the cadmium concentration was higher in the below-ground organs than in the aboveground organs. The mean bioaccumulation coefficient in the 24 investigated plots in the submerged environment was higher than that in the 20 and 40 mg kg−1 cadmium treatments in the non-submerged environment. The mean translocation factor in the submerged environment was nine times higher than that in non-submerged environment. These results indicate that submergence enhanced cadmium bioaccumulation in the aboveground organs and that this plant can be used to remove heavy metals from polluted rivers and lakes.

Acknowledgments

The authors greatly appreciate the five anonymous reviewers for the constructive suggestions on an earlier version of this manuscript.

Additional information

Funding

This study was financially supported by the Scientific Research Fund of Hunan Provincial Education Department (16B121); Key Research and Development Program of Hunan Province (2017WK2082; 2017SK2300); and Foundation for Advanced Talents in Hunan Agricultural University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.