831
Views
26
CrossRef citations to date
0
Altmetric
Review Article

Floating treatment wetlands as biological buoyant filters for wastewater reclamation

, , &
Pages 1273-1289 | Published online: 27 Jun 2019
 

Abstract

Floating treatment wetlands (FTWs) are an innovative product of ecological engineering that can play a promising role in wastewater treatment. It provides low-cost, eco-friendly, and sustainable solutions for the treatment of wastewater, particularly in regions with economic constraints. Generally, FTWs comprise rooted plants that grow on the surface of water with their roots extending down into the pelagic zone rather than being embedded into the sediments. This drooping structure helps develop (1) a hydraulic flow between the root network and the bottom of the treatment system and (2) a large biologically active surface area for the physical entrapment (filtration) of contaminants, as well as their biochemical transformation and degradation. Furthermore, the rooted network allows proliferation of microorganisms that form biofilms and enhance pollutant degradation while promoting plant growth. The augmentation of bacteria in FTWs has been proven to be the most effective approach for reclamation of wastewater. This article discusses the operational parameters of FTWs for maximal remediation of wastewater and highlights the importance of plant-bacteria partnerships in a typical FTW system for enhanced cleanup of wastewater. We propose that this technology is preferable over other methods that require high energy, costs, and area to install or operate machinery.

Additional information

Funding

The research was supported by the Higher Education Commission, Pakistan [1-52/ILS-UITSP/HEC/2014 and 20-3854/R7D/HEC/14] and International Foundation of Science (IFS) Sweden and Organisation for the Prohibition of Chemical Weapons (OPCW) [W/5104-2].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.