377
Views
10
CrossRef citations to date
0
Altmetric
Articles

Floriculture: alternate non-edible plants for phyto-remediation of heavy metal contaminated soils

ORCID Icon, , &
Pages 725-732 | Published online: 09 Jan 2020
 

Abstract

Contamination of pre-urban arable land, by untreated municipal/industrial effluents derived heavy metals, is causing serious health hazards to human beings and abiotic components of the ecosystem. In this study, phytoremedial potential of four non-eatable floriculture plants, i.e. antirrhinum, pansy, calendula, and marigold, was explored by growing in heavy metal contaminated soil (collected from pre-urban area under untreated wastewater irrigation for more than 20 years) amended with bacterial inoculum and EDTA amended soils under greenhouse conditions for 75 days. Bacterial inoculation gave a maximum increase in the root (47.1%) and shoot (30.9%) biomass, while EDTA amendment gave 37.1 and 21.4%, respectively. However, EDTA application increases more metal concentrations in the root (65%) and shoot (36%) than that of bacterial inoculum, i.e. 37 and 27%, respectively. The values of bioconcentration factor (BCF) of all the plants for Cd, Cr, Ni and Pb were significantly increased by EDTA application and bacterial inoculum over control. The BCF values were either ≈1 or >1 in all the treatments in case of Cr. Ni and Pb. Contrarily, reduction in translocation factor (TF) values of all the flowering plants for all the metals were observed over control when the growth medium was treated with EDTA and bacterial inoculum.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.