842
Views
27
CrossRef citations to date
0
Altmetric
Reviews

A review of chromite mining in Sukinda Valley of India: impact and potential remediation measures

, , &
Pages 804-818 | Published online: 07 Feb 2020
 

Abstract

Sukinda Valley, one of the highly polluted areas of the world is generating tons of mining waste and causing serious health and environmental issues in its surroundings. Several reports are available reporting the severity of hexavalent chromium, yet little efforts have been made to address the pollution and its remediation due to a lack of proper remedial measures. The review highlights the pros and cons of various physical, chemical and biological techniques used worldwide for the treatment of chromium waste and also suggests better and reliable bioremediation measures. Microbes such as Acidophilium and Acidithiobacillus caldus (Bioleaching), Pseudomonas, Micrococcus and Bacillus (Bioreduction), Aereobacterium and Saccharomyces (Biosorption), are widely used for bioremediation of hexavalent chromium owing to their unique metabolic activities, ionic movement through an extracellular membrane, and other cellular adsorptions and reduction properties. The use of native and hybrid combinations of microbes supported by organic supplements is projected as a fast and efficient technique that not only reduces chromium quantity but also maintains the integrity of the microbial sources. Innovation and emphasis on nano-based products like nanocomposite, nano adsorbent, nanoscale zerovalent iron (nZVI) particles and multifunctional plant-growth-promoting bacteria (PGPB) will serve as the next generation environmental remediation technologies in the near future.

Acknowledgments

The authors thank the Department of Biotechnology and Medical Engineering and the Department of Electrical Engineering of National Institute of Technology Rourkela, India for providing the research facility.

Additional information

Funding

The authors gratefully acknowledge the Department of Science and Technology (DST), India for funding the research under DST-WTI (Water Technology Initiative) [WTI/2015/113].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.