798
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Phytoremediation capabilities of Salvinia molesta, water hyacinth, water lettuce, and duckweed to reduce phosphorus in rice mill wastewater

ORCID Icon & ORCID Icon
Pages 1097-1109 | Published online: 27 Feb 2020
 

Abstract

The objective of this study was to investigate the reduction of phosphorus from rice mill wastewater by using free floating aquatic plants. Four free floating aquatic plants were used for this study, namely water hyacinth, water lettuce, salvinia, and duckweed. The aquatic plants reduced the total phosphorus (TP) content up to 80% and chemical oxygen demand (COD) up to 75% within 15 days. The maximum efficiency of TP and COD reduction was observed with water lettuce followed by water hyacinth, duckweed, and salvinia. The study also aims to predict phosphorus removal by three modeling techniques, for example, linear regression (LR), artificial neural network (ANN), and M5P. Prediction has been done considering hydraulic retention time (HRT), hydraulic loading rate (HLR), and initial concentration of phosphorus (Cin) as input variables whereas the reduction rate of TP (R) has been considered as a predicted variable. ANN shows promising results as compared to M5P tree and LR modeling. The model accuracy is analyzed using three statistical evaluation parameters which are coefficient of determination (R2), root mean square error (RMSE), and means absolute error (MAE).

Acknowledgments

The authors express their gratitude to the Department of Civil Engineering, NIT Kurukshetra for providing necessary facilities to complete this study successfully.

Disclosure statement

The authors declare that there is no conflict of interests regarding the publication of this manuscript

Additional information

Funding

The authors are thankful to the Ministry of Human Resources and Development (MHRD), Government of India, for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.