266
Views
6
CrossRef citations to date
0
Altmetric
Articles

Assessment of physiological and biochemical responses of Amaranthus retroflexus seedlings to the accumulation of heavy metals with regards to phytoremediation potential

ORCID Icon, , &
Pages 219-230 | Published online: 25 Aug 2020
 

Abstract

The aim of this research was to assess, under laboratory conditions, how the accumulation of four heavy metals (HMs) (lead (Pb), copper (Cu), nickel (Ni), and zinc (Zn)), prepared as aqueous solutions from 1 μM to 1 mM, affected biochemical and physiological parameters of Amaranthus retroflexus seedlings. Seedlings showed considerably high resistance to all investigated HMs and no significant oxidative stress in leaves. After chronic exposure to high doses of any of the HMs, seedlings remained viable, but with slightly slower axial growth. We propose the use of biochemical indices (lipid peroxidation (LPO) intensity; level of total peroxides) as criteria to assess the adaptive potential of amaranth plants to HMs. These indices had very high correlation coefficients (r) with the accumulation of HMs in A. retroflexus roots, stems and leaves: 0.86–0.89 for malone dialdehyde (MDA) content for Ni and Zn, and 0.79–0.94 for total peroxides (for Cu, Pb, and maximum in Ni). At 1 mM of any HM, seedlings accumulated Pb and Ni at levels of HM-hyperaccumulating species. If soil is contaminated (in terms of maximum permissible concentration, MPC) by Pb (8.2 ± 2.2 MPC) or Ni (3.5 ± 1.0 MPC) (equivalent to 1 mM of the HM in solution), A. retroflexus is a strong candidate for the phytoremediation of Pb- and Ni-contaminated soils.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.