180
Views
4
CrossRef citations to date
0
Altmetric
Articles

Foliar uptake and transport of atmospheric trace metals bounded on particulate matters in epiphytic Tillandsia brachycaulos

, , &
Pages 400-406 | Published online: 15 Sep 2020
 

Abstract

Epiphytic Tillandsia species are uniquely suitable for the study of foliar uptake of atmospheric trace metals (ATM) because these plants can only rely on their leaves for this purpose. Therefore, we analyzed the uptake and transport of different metals (Fe, Al, Zn, Mn, Ba, Ti, Cu, Ni, Cr, Sn, Pb, Co, As, and Se) bounded on atmospheric particulate matters (APM) in Tillandsia brachycaulos Schltdl. The results showed that the metal contents inside leaves significantly (p < .05) increased after APM exposure. There was a significant (p < .05) positive correlation between the content of 14 trace metals accumulated on the leaf surface and inside the leaf, which indicated that APM is the main source of ATM uptake. The subcellular analysis showed that the Pb, Cu, Ni, Zn, and Cr absorbed by T. brachycaulos were stored primarily in the cell walls and organelles. After the removal of foliar trichomes of T. brachycaulos, the metal contents on the leaf surface decreased, whereas the contents of most metals inside the leaf increased. This is an evidence that foliar trichomes serve a protective function by intercepting ATM onto the leaf surface.

    Novelty statements

  1. There was a significant positive correlation between the contents of 14 trace metals accumulated on the leaf surface and in the leaf of T. brachycaulos, which indicated that atmospheric particulate matters are the main source of trace metals in the leaves.

  2. After the removal of foliar trichomes of T. brachycaulos, the trace metal contents on the leaf surface decreased, whereas the contents of most trace metals inside the leaf increased. This is an evidence that foliar trichomes serve a protective function by intercepting atmospheric trace metals onto the leaf surface.

Additional information

Funding

This study was funded by the National Key Research and Development Project [2019YFC1605800] and National Natural Science Foundation of China [41571472].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.