358
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Interspecific competition and their impacts on the growth of macrophytes and pollutants removal within constructed wetland microcosms treating domestic wastewater

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 76-87 | Published online: 30 May 2021
 

Abstract

Eight free water surface constructed wetland microcosm (CWM) units are designed with single as well as mixed planting of Pistia stratiotes, Phragmites karka, and Typha latifolia with control to assess their competitive value (CV), relative growth rates (RGR), and pollutants removal efficiency. Further, the total dry biomass production and other growth parameters such as number of macrophytes, above-ground biomass, below-ground biomass, and root length were also measured to understand the dominant characteristics of the macrophytes. The CWM units with species mixture out-performed species monocultures. Removal of BOD, TP, SRP, NH4+-N, NO3-N, and NO2-N by mixed planting of P. stratiotes and P. karka was higher at most of the time. Typha latifolia was the superior competitor against both P. stratiotes and P. karka due to its aggressive characteristics that inhibits the growth of neighboring macrophytes. However, P. karka was the superior competitor against P. stratiotes. The RGR of T. latifolia in all experimental units was almost two times more than that of P. karka.

Novelty Statement The CWM units with species mixture out-performed species monocultures. CWMs with more than one macrophytic species are less vulnerable to seasonal fluctuations and more effective in contaminants removal as compared to single macrophyte wetlands. Removal of BOD, TP, SRP, NH4+-N, NO3-N, and NO2-N by mixed planting of P. stratiotes and P. karka was higher at most of the time. The CWMs with P. stratiotes and P. karka are superior choice due to their higher wastewater nutrients removal capacity. The application of these three macrophytes in mixed cultures in free water surface constructed wetland is rare. The results are useful in designing large-scale multi-species wetlands which are less susceptible to seasonal variation and more effective in pollutants removal than single-species wetlands.

Acknowledgement

The authors acknowledge the laboratory support extended by the Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow.

Disclosure statement

The authors declare no potential conflicts of interest with respect to authorship, research, and publication of this paper.

Additional information

Funding

Doctoral fellowship of University Grants Commission, New Delhi [Ref. no. 3525/SC/NET-July 2016] to the corresponding author is greatly acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.