1,035
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Preparation and characterization of activated carbon from hydrochar by hydrothermal carbonization of chickpea stem: an application in methylene blue removal by RSM optimization

, ORCID Icon, ORCID Icon &
Pages 88-100 | Published online: 23 May 2021
 

Abstract

Herein, mesoporous activated carbon (AC) was prepared through potassium hydroxide (KOH) activation of hydrochar derived from the hydrothermal carbonization (HTC) of chickpea stem (CS), and successfully applied to remove methylene blue (MB) dye from aqueous solutions in a batch system. The HTC-CSAC was prepared depending on different impregnation ratios (hydrochar:KOH, 50–150%), impregnation times (12–48 h), activation temperatures (400–600°C) and activation times (30–60 min). To define HTC-CSAC, various analytical techniques such as iodine adsorption number (IAN), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) were used. In the removal process of MB by the best HTC-CSAC with a high IAN of 887 mg g−1 obtained under conditions including impregnation ratio of 70%, activation time of 45 min, activation temperature of 600°C and impregnation time of 24 h, the effects of adsorption parameters such as pH factor (2–10), adsorbent dosage (50–100 mg), initial MB concentration (40–80 mg/L) and contact time (90–180 min) were studied. Besides, a detailed evaluation of the adsorption mechanism for the removal of MB by HTC-CSAC was performed. The Langmuir model indicated the best isotherm data correlation, with a maximum monolayer adsorption capacity (Qmax) of 96.15 mg g−1. The adsorption isotherm findings demonstrated that the MB removal process is feasible, and that this process takes place through the physical interaction mechanism. Additionally, the HTC-CSAC adsorbent exhibited a high regeneration and reuse performance in MB removal. After five consecutive adsorption-desorption cycles, HTC-CSAC maintained the reuse efficiency of 77.86%. As a result, the prepared HTC-CSAC with a high BET surface area of 455 m2 g−1 and an average pore diameter of 105 Å could be recommended as a promising and reusable adsorbent in the treatment of synthetic dyes in wastewaters.

Graphical Abstract

    Highlights

  • Mesoporous activated carbon (AC) was prepared through KOH activation of hydrochar derived via hydrothermal carbonization (HTC) of chickpea stem (CS).

  • The BET surface area and average pore diameter of HTC-CSAC were 455 m2 g−1 and 105 Å, respectively.

  • The removal of MB dye by the best HTC-CSAC with a high IAN of 887 mg g−1, was studied using RSM optimization.

  • The adsorption isotherm findings demonstrated that the MB removal process is feasible, and that this process takes place through the physical interaction mechanism.

  • The HTC-CSAC adsorbent exhibited a high regeneration and reuse performance in MB removal.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.