449
Views
0
CrossRef citations to date
0
Altmetric
Articles

Iodine adsorption and electrochemical double-layer capacitor characteristics of activated carbon prepared from low-cost biomass

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 74-81 | Published online: 06 Apr 2022
 

Abstract

The efficient adsorption application and electric double-layer capacitor material with low-cost biomass-based activated carbon materials have been quite common recently. In this study, chestnut shell-based activated carbons were produced by chemical activation. ZnCl2, H3PO4, and KOH agents were used for chemical activation. The obtained activated carbon, iodine adsorption from aqueous solutions, and its use as an electro capacitor were investigated. The scanning electron microscope, nitrogen adsorption/desorption, and Fourier transform infrared spectroscopy were used for characterization. The values of surface area and iodine adsorption capacity of the chestnut shell-based activated carbon are 1544 m2 g−1 and 1525 mg g−1. As a result, a specific capacitance of 97 Fg−1 with chestnut shell-based activated carbon was obtained in a 1 M KCl electrolyte for the electrochemical double-layer capacitor. This study shows that activated carbon based on the chestnut shell can be used both as an electrochemical energy storage material and as an adsorbent in iodine adsorption.

Disclosure statement

The authors declare that they have no conflicts of interest.

Additional information

Funding

This work was supported by Siirt University Scientific Research Unit supported this study [2017-SIÜSYO-13].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.