181
Views
0
CrossRef citations to date
0
Altmetric
Articles

Phytoremediation of crude oil contaminated soil using Sudanese plant species Acacia sieberiana Tausch

, &
Pages 314-321 | Published online: 10 Jun 2022
 

Abstract

Phytoremediation is a new technology for cleaning contaminated soil with crude oil. Oil pollution is a serious problem worldwide; the aim of this study was to use the plant for Phytoremediation. Leguminous plant Acacia seiberiana Tausch was tested for it is efficiency to remediate soil polluted with 0.5, 1, 1.5 and 2% (w/w) crude oil and it is the ability to enhance the activity of soil microorganisms. Plant parameters, degradation percentage, Total Petroleum Hydrocarbon and bacterial count were measured. Results showed that the concentration of the crude oil did not affect plant growth indicating the significant success of the Phytoremediation process. Shoot length and shoot and root weights have not been negatively affected by oil, compared to the control plant, up to a concentration of 1.5% for up to six months. Crude oil degradation percentages were found to be in the range of 49–79%. The highest degradation percentage was recorded for the soil collected from underneath A. sieberiana Tausch seedlings (79%). A total of 81 different hydrocarbons were detected in soil samples at zero time and most of them were found to be of long (≥30 carbon atoms) and moderate (10–29 C) hydrocarbon chains. Fraction analyses were conducted in plant A. sieberiana Tausch seedlings at intervals of 60, 120 and 180 days of incubation, six different hydrocarbons were detected. The most abundant hydrocarbon detected were Heneicosane (21 C), Tetracosane (24 C) and Octacosane (28 C). The viable microorganism’s count in oil-contaminated soil at any of the concentrations tested was significantly (P ≤ 0.01) higher than that in oil-free soil at any sampling interval. High efficiency of biodegradation was achieved using A. seiberiana Tausch indicating the unique mechanism of this plant in remediating contaminated soil with crude oil.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.