81
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Characterization and application of ligno-cellulosic fibers derived from Robinia Pseudoacacia for the bio-sorption of methylene blue from water

, , &
Pages 1359-1370 | Published online: 28 Dec 2022
 

Abstract

Ligno-cellulosic biomasses had been recognized for their potential use to produce chemicals and biomaterials. The current study focused on the use of a new cellulosic Robinia Pseudoacacia fiber and extracted lignin as adsorbents for methylene blue (a cationic dye). The biomaterials were analyzed using FT-IR spectroscopy, SEM, XRD, and TGA-DTA techniques. The surface of Robinia fibers was rough and porous. The crystallinity index (CrI) value for Robinia fibers was found to be 32%. The ability of the studied samples to remove methylene blue from water was assessed under the variation of time, pH, dye concentration, temperature, and NaCl concentration. The maximum adsorption capacity of methylene blue reached 191 mg/g for Robinia fibers and it achieved 22 mg/g for the extracted lignin (T = 20 °C, pH = 6, and time = 90 min). The adsorption data complied with the pseudo second-order kinetic model and both Langmuir and Freundlich isotherms. Based on these findings, the process suggested the occurrence of many physicochemical interactions between methylene blue molecules and the studied biomaterials. The adsorption mechanism was exothermic, non-spontaneous, and it was described by the decrease of the disorder. Adsorption results proved that Robinia fiber was an attractive candidate for the removal of cationic dyes from water.

Novelty statement

A low-cost and abundant Robinia Pseudoacacia fiber and its extracted lignin are characterized and further studied as adsorbents for cationic dyes under the change of the experimental conditions.

Additional information

Funding

This research has been funded by Scientific Research Deanship at University of Ha’il – Saudi Arabia through project number "RD-21 018".

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.