57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regulation of mineral elements in Hordeum brevisubulatum by Epichloë bromicola under Cd stress

ORCID Icon, , , , &
Pages 1253-1268 | Published online: 02 Feb 2024
 

Abstract

In this study, wild barley (Hordeum brevisubulatum) infected (E+) and uninfected (E-) by Epichloë bromicola were used for hydroponic experiments during the seedling stage. Various attributes, such as the effect of fungal endophyte on the growth and development of wild barley, the absorption of cadmium (Cd) and mineral elements (Ca, Mg, Fe, Mn, Cu, Zn), subcellular distribution, and chemical forms were investigated under CdCl2 stress. The results showed that the fungal endophy significantly reduced the Ca content and percentage of plant roots under Cd stress. The Fe and Mn content of roots, the mineral element content of soluble fractions, and the stems in the pectin acid or protein-chelated state increased significantly in response to fungal endophy. Epichloë endophyte helped Cd2+ to enter into plants; and reduced the positive correlation of Ca-Fe and Ca-Mn in roots. In addition, it also decreased the correlation of soluble components Cd-Cu, Cd-Ca, Cd-Mg in roots, and the negative correlation between pectin acid or protein-chelated Cd in stems and mineral elements, to increase the absorbance of host for mineral elements. In conclusion, fungal endophy regulated the concentration and distribution of mineral elements, while storing more Cd2+ to resist the damage caused by Cd stress. The study could provide a ground for revealing the Cd tolerance mechanism of endophytic fungal symbionts.

NOVELTY STATEMENT

The present study is the first to study the effect of fungal endophy on essential mineral elements of plants under heavy metal stress, filling a gap in the existing research. The study could be helpful to reveal the mechanism of endophytic fungi to improve the host's tolerance to heavy metals and provide a foundation for the grass-endophyte symbionts to improve heavy metal-contaminated soils as ecological grasses.

Acknowledgements

Thanks to the experts and students who gave guidance and help in the experiment and article writing.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

The present study was funded by the Natural Science Foundation of China (U21A20239, 31971756, 32201445), the Inner Mongolia Seed Industry Science and Technology Innovation Major Demonstration Project (2022JBGS0040).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.