125
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

RNA-Binding Efficacy of N-Phenylbenzohydroxamic Acid: An Invitro and Insilico Approach

, , &
Pages 332-347 | Received 03 Jun 2014, Accepted 14 Dec 2014, Published online: 15 Apr 2015
 

Abstract

RNA has attracted recent attention for its key role in gene expression and hence targeting by small molecules for therapeutic intervention. This study is aimed to elucidate the specificity of RNA binding affinity of parent compound of N-arylhydroxamic acids series, N-phenylbenzohydroxamic acid trivially named as PBHA,C6H5NOH.C6H5C ˭ O. The binding behavior was examined by various biophysical methods such as absorption, fluorescence, and viscosity measurements. Molecular docking was also done. The value of affinity constant and overall binding constant was calculated 5.79 ± 0.03 × 104 M−1 and K’ = 1.09 ± 0.03 × 105 M−1, respectively. The Stern-Volmer constant Ksv obtained was 2.28 ± 0.04 × 104 M−1. The compound (PBHA) shows a concentration-based enhancement of fluorescence intensity with increasing RNA concentration. Fluorescence quenching of PBHA–RNA complex in presence of K4 [Fe(CN)6] was also observed. Viscometric studies complimented the UV results where a continuous increase in relative viscosity of the RNA solution was observed with added optimal PBHA concentration. All the experimental evidences indicate that PBHA can strongly bind to RNA through an intercalative mode.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 606.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.