208
Views
24
CrossRef citations to date
0
Altmetric
Contributed Articles

Long-Term Effects on Soil of the Disposal of Olive Mill Waste Waters (OMW)

, &
Pages 37-51 | Published online: 14 Feb 2014
 

Abstract

Disposal of untreated olive mill waste waters (OMW) is a serious environmental problem in many Mediterranean countries. The aim of this work was to assess whether changes in soil properties have occurred due to direct disposal of raw OMW on soil and in evaporation ponds, and to investigate the potential fate and transport of pollutants after olive oil production had ceased. The results clearly showed that uncontrolled OMW disposal is a significant source of pollution to surface soil and waters. Disposal of OMW on soil greatly increased electrical conductivity (EC), available phosphorous (P), exchangeable potassium (K) and magnesium (Mg), organic matter, polyphenols, total and inorganic nitrogen (N), and available micronutrients mainly in surface soil layers. The presence of a high content of clay and carbonates in soil act as barriers and prevent downward transport of pollutants. Residual levels of total carbon (C), polyphenols, total and inorganic N, exchangeable K+, available P, iron (Fe), and copper (Cu) were also elevated even 8 years after mill closure. The long term disposal of OMW highlights the need to establish soil quality standards for soil parameters in order to identify soils affected by the disposal of OMW.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 270.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.