263
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

The Acute Exposure Guideline Level (AEGL) Program: Applications of Physiologically Based Pharmacokinetic Modeling

, &
Pages 621-634 | Accepted 01 Dec 2003, Published online: 12 Aug 2010
 

Abstract

The primary aim of the Acute Exposure Guideline Level (AEGL) program is to develop scientifically credible limits for once-in-a-lifetime or rare acute inhalation exposures to high-priority, hazardous chemicals. The program was developed because of the need of communities for information on hazardous chemicals to assist in emergency planning, notification, and response, as well as the training of emergency response personnel. AEGLs are applicable to the general population, including children, the elderly, and other potentially susceptible subpopulations. AEGLs are the airborne concentrations of chemicals above which a person could experience notable discomfort or irritation (AEGL-1); serious, long-lasting health effects (AEGL-2); and life-threatening effects or death (AEGL-3). AEGLs are determined for five exposure periods (10 and 30 min and 1, 4, and 8 h). Physiologically based pharmacokinetic (PBPK) models can be very useful in the interspecies and time scaling often required here. PBPK models are used for the current article to predict AEGLs for trichloroethylene (TCE), based on the time course of TCE in the blood and/or brain of rats and humans. These AEGLs are compared to values obtained by standard time-scaling methods. Comprehensive toxicity assessment documents for each chemical under consideration are prepared by the National Advisory Committee for AEGLs, a panel comprised of representatives of federal, state, and local governmental agencies, as well as industry and private-sector organizations. The documents are developed according to National Research Council (NRC) guidelines and must be reviewed by the NRC Subcommittee on Acute Exposure Guideline Levels before becoming final. AEGLs for 18 chemicals have been published, and it is anticipated that 40 to 50 chemicals will be evaluated annually.

PBPK modeling supported by the Department of Energy (DR-FC02-02CH11109).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.