74
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Immunological and Hematological Effects Observed in B6C3F1 Mice Exposed to JP-8 Jet Fuel for 14 Days

, , , , , & show all
Pages 1109-1129 | Received 01 Oct 2003, Accepted 01 Feb 2004, Published online: 12 Aug 2010
 

Abstract

JP-8 is the primary jet fuel used by the U.S. Air Force and NATO allies. Exposure is likely to be widespread and to include both military and aviation industry personnel as well as residents living near fuel contaminated sites. This study examines the effects of JP-8 on humoral and cell-mediated and hematological parameters. A suite of immunotoxicological endpoints was evaluated in adult female B6C3F1 mice gavaged with JP-8 (in an olive oil carrier) ranging from 250–2500 mg/kg/d for 14 d. One day following the last exposure, significant increases in liver mass were detected beginning at exposure levels of 1000 mg/kg/d, while thymic mass was decreased at exposure levels of 1500 mg/kg/d and above. Decreases in thymic cellularity, however, were only observed at exposure levels of 2000 mg/kg/d and above. Mean corpuscular volume was increased (1500–2500 mg/kg/d), while the hematocrit, hemoglobin concentration, and red blood cell count were decreased only at the 2500 mg/kg/d exposure level. Natural killer cell (NK) activity and T- and B-cell proliferation were not altered. Decreases in the plaqueforming cell (PFC) response were dose responsive at levels of 500 mg/kg/d and greater, while unexpectedly, serum levels of anti-SRBC immunoglobulin M (IgM) were not altered. Alterations were detected in thymic and splenic CD4/8 subpopulations, and proliferative responses of bone marrow progenitor cells were enhanced in mice exposed to 2000 mg/kg/d of JP-8. This study establishes that humoral immune function is impaired with lower exposure levels of JP-8 than are required to affect primary and secondary immune organ weights and cellularities, CD4/8 subpopulations, and hematological endpoints.

This work was supported by the Department of Defense (grant DAMD17–99–1–9013). Its content is solely the responsibility of the authors and does not necessarily represent the official views of the U.S. Department of Defense. The authors thank Erin EuDaly, Amy EuDaly, Lauren Heesemen, Joshua Smythe, Kimberlee Banks, Jerome Frasier, and Krista Harris for their contributions to manuscript preparation and their laboratory and animal care expertise.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.