133
Views
31
CrossRef citations to date
0
Altmetric
Original Articles

Expression of Stress-related Genes in a Cadmium-resistant A549 Human Cell Line

, , , , , & show all
Pages 703-718 | Received 14 Jun 2004, Accepted 29 Oct 2004, Published online: 24 Feb 2007
 

Abstract

This study was designed to explain the basis for Cd-acquired tolerance of A549 cells cultured in the presence of Cd. Thirty-day exposure of cultured human pneumocytes (A549 cell line) to 10 μ M Cd was previously found to induce an acquired resistance persisting over several weeks of culture. Moreover, these Cd-resistant cells (R-cells) were found to proliferate faster than controls. No difference was found between R-cells and control cells (S-cells) concerning the basal and Cd-induced level of metallothioneins expression. However, after exposure to Cd, cell glutathione levels were unchanged in R-cells while they were either increased (at 10 μM Cd) or decreased (at 25 μM Cd) in S-cells. cDNA array analysis showed that genes encoding for (GPx1) glutathione peroxidase, glutathione reductase, catalase, and superoxide dismutase were similarly expressed in R- and S-cells, whereas the gene of (GPx2) glutathione peroxidase was overexpressed in R-cells. Most genes encoding stress proteins were similarly expressed, except for HSP27 and GRP94 genes, which were respectively under- (ratio 0.5 ± 0.1) and over- (1.8 ± 0.5) expressed in R-cells. Acute exposure to Cd was found to trigger the upregulation of genes encoding the chaperone proteins HSP90A, HSP27, HSP40, GRP78, HSP72, and HO-1 in S-cells. In R-cells, only HO-1 and HSP72 were overexpressed but at a lower level. This suggests that the Cd-related adverse conditions, leading to protein misfolding, are lowered in R-cells. It is likely that the upregulation of GPx2 in R-cells leads to a higher antioxidant defense in these cells.

This research was supported by ASUPS from the University Paul Sabatier Toulouse III.

Notes

This research was supported by ASUPS from the University Paul Sabatier Toulouse III.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.