58
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of the Effects of Subchronic Oral Administration of n-Butyl Maleate in Sprague-Dawley Rats

, , , &
Pages 1038-1045 | Received 04 Aug 2006, Accepted 25 Oct 2006, Published online: 09 May 2007
 

Abstract

n-Butyl maleate, also referred to as monobutyl maleate, is an ester of maleic acid, which is used as a counterion in the pharmaceutical industry. While substantial published data exist on short-term treatment, maleic acid-induced renal toxicity in the rat, no toxicity data are available on the monobutyl ester. This study evaluated the oral subchronic nephrotoxicity potential of n-butyl maleate administered to Sprague-Dawley rats (10/males and females/group) at doses of 0 (vehicle control), 10, 30, or 60 mg/kg/d for 2 wk. Statistically significant elevations in organ weights were noted in males at 60 mg/kg/d and included: (a) increases in absolute heart, kidney, and liver weights; (b) increased liver to body weight ratios; and (c) increased heart, kidney, liver, spleen, and epididymides to brain weight ratios. In females, statistically significant increases in organ weights were limited to increases in adrenal to brain weights at ≥10 mg/kg/d, kidney to brain weights at ≥30 mg/kg/d, and kidney to body weight and liver to brain weight ratios at 60 mg/kg/d. There were no macroscopic or microscopic pathology changes observed in any of the tissues examined. Importantly, light microscopic examination of the kidney was unremarkable at the end of the 2-wk dosing period with n-butyl maleate. Although lacking a histopathological correlate, resultant increases in organ weights at 60 mg/kg/d might be considered indicative of an adverse effect. However, renal perturbation induced by n-butyl maleate was mild in comparison to maleic acid-induced renal toxicity, which manifested as impaired tubular resorption and necrosis of the proximal tubules at doses ≥60 mg/kg/d. The no-observed-adverse-effect level (NOAEL) for the study was 30 mg/kg/d.

The authors thank Charles River Laboratories, William Baker, Lynn Lucke, Melissa Miller, Rusty Rush, and Joseph Siglin for their technical assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.