268
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Fine Oil Combustion Particle Bioavailable Constituents Induce Molecular Profiles of Oxidative Stress, Altered Function, and Cellular Injury in Cardiomyocytes

&
Pages 1824-1837 | Received 30 Oct 2006, Accepted 29 Jan 2007, Published online: 11 Oct 2007
 

Abstract

Epidemiological studies have shown a positive association between exposure to air particulate matter (PM) pollution and adverse cardiovascular health effects in susceptible subpopulations such as those with pre-existing cardiovascular disease. The mechanism(s) through which pulmonary deposited PM, particularly fine PM2.5, PM with mass median aerodynamic diameter <2.5 μm, affects the cardiovascular system is currently not known and remains a major focus of investigation. In the present study, the transcriptosome and transcription factor proteome were examined in rat neonatal cardiomyocyte (RCM) cultures, following an acute exposure to bioavailable constituents of PM2.5 oil combustion particles designated residual oil fly ash leachate (ROFA-L). Out of 3924 genes examined, 38 genes were suppressed and 44 genes were induced following a 1-h exposure to 3.5 μg/ml of a particle-free leachate of ROFA (ROFA-L). Genomic alterations in pathways related to IGF-1, VEGF, IL-2, PI3/AKT, cardiovascular disease, and free radical scavenging, among others, were detected 1 h postexposure to ROFA-L. Global gene expression was altered in a manner consistent with cardiac myocyte electrophysiological remodeling, cellular oxidative stress, and apoptosis. ROFA-L altered the transcription factor proteome by suppressing activity of 24 and activating 40 transcription factors out of a total of 149. Genomic alterations were found to correlate with changes in transcription factor proteome. These acute changes indicate pathological molecular alterations, which may lead to possible chronic alterations to the cardiac myocyte. These data also potentially relate underlying cardiovascular effects from occupational exposure to ROFA and identify how particles from specific emission sources may mediate ambient PM cardiac effects.

This work was supported by U.S. Environmental Protection Agency/North Carolina State University Cooperative Agreement CT#826512010. The authors thank Drs. Kenneth Adler, Philip Sannes, and Damian Shea for their thoughtful review of this article before publication. The authors also thank Richard Jaskot, Judy Richards, and Drs. Srikanth Nadadur, Susan Hester, and Heather Floyd for their expert technical and bioinformatics assistance on this project.

The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the agency, nor does the mention of trade names or commercial products constitute endorsement or recommendation for use.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.