227
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Physiologically Based Modeling of the Inhalation Pharmacokinetics of Ethylbenzene in B6C3F1 MiceFootnote

, , , , , & show all
Pages 1838-1848 | Received 21 Jun 2006, Accepted 01 Feb 2007, Published online: 11 Oct 2007
 

Abstract

A physiologically based pharmacokinetic (PBPK) model was developed for inhaled ethylbenzene (EB) in B6C3F1 mice. The mouse physiological parameters were obtained from the literature, but the blood:air and tissue:air partition coefficients were determined by vial equilibration technique. The maximal velocity for hepatic metabolism (Vmax) obtained from a previously published rat study was increased by a factor of ∼3 to account for enzyme induction during repeated exposures. The Michaelis affinity constant (Km) for hepatic metabolism of EB, obtained from a previously published rat PBPK modeling study, was kept unchanged during single and repeated exposure scenarios. Hepatic metabolism alone could not adequately describe the clearance of EB from mouse blood. Additional metabolism was assumed to be localized in the lung. The parameters for pulmonary metabolism were obtained by optimization of PBPK model fits to kinetic data collected following exposures to 75–1000 ppm. The PBPK model successfully predicted all available blood and tissue concentration data in mice exposed to 75 or 750 ppm EB. Overall, the results indicate that the rate of EB clearance is markedly higher in B6C3F1 mice than rats or humans and exceeds the hepatic metabolism capacity. Available biochemical evidence is consistent with a significant role for pulmonary metabolism; however, the extent to which the extrahepatic metabolism is localized in the lung is unclear. Overall, the PBPK model developed for the mouse adequately simulated the blood and tissue kinetics of EB by accounting for its high rate of clearance.

Notes

∗Drs. Tardif and Krishnan were co-recipients of a research grant from the Ethylbenzene Panel of the American Chemistry Council, in support of the work described in this publication.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.