93
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

In Situ Pulmonary Localization of Air Pollution Particle-induced Oxidative Stress

, &
Pages 1929-1935 | Received 04 Apr 2006, Accepted 13 Apr 2007, Published online: 26 Oct 2007
 

Abstract

Exposure to air particulate matter (PM) may be associated with increased morbidity and mortality. An improved understanding of the mechanism(s) by which PM induces adverse effects is needed. This preliminary study examined the ability to use unique bioluminescent technologies to identify acute localized areas of residual oil fly ash (ROFA)-induced, oxidative lung injury. Transgenic mice, in which luciferase (luc) expression was regulated by the heme oxygenase (HO)-1 promoter, were exposed by pharyngeal aspiration to either saline or 50 μg ROFA/mouse. HO-1-luc expression was determined at 2, 6, 12, and 24 h postexposure using luminescent quantification and Western blot analysis of lung protein extracts, as well as with a novel in situ pulmonary bioluminescence imaging approach. The different approaches for the detection of luciferase in lung protein extracts recovered from ROFA exposed HO-1-luc transgenic mice gave variable results. Pulmonary homogenate HO-1-luc levels were increased at 2 h and 24 h postexposure to ROFA when examined by chemilumescent and Western blot analyses, respectively. In situ bioluminescent imaging of pulmonary tissue sections detected ROFA-induced pulmonary luciferase expression by identifying highly localized increases in HO-1-luc expression at 12 h and 24 h postexposure. These results suggest that the variability observed in the methods of detection for luciferase may be due to a localization of cells expressing luciferase within tissue samples, demonstrating that the HO-1-luc transgenic mouse model is the preferred method to detect and pinpoint in vivo particle-induced, oxidative lung injury. The feasibility of using this in situ approach is a unique proof-of-concept application for the identification of localized sites of oxidative injury induced by environmental pollutants.

These studies were supported by the funds provided by the U.S. Environmental Protection Agency through a cooperative agreement with North Carolina State University College of Veterinary Medicine, Raleigh, NC. The authors thank Judy Richards for her technical support and Dr. Costa, U. S. EPA, and Dr. Dorman, CIIT Centers for Health Research, for their critical review of this article.

The information described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, and has been approved for publication. Approval does not signify that the contents necessarily reflect the views and policy of the agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.