194
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Mechanisms of Chloroform-Induced Hepatotoxicity: Oxidative Stress and Mitochondrial Permeability Transition in Freshly Isolated Mouse Hepatocytes

, , , &
Pages 1936-1945 | Received 04 Jan 2007, Accepted 11 Apr 2007, Published online: 26 Oct 2007
 

Abstract

The role of mitochondrial permeability transition (MPT) and oxidative stress in chloroform toxicity was determined in freshly isolated female B6C3F1 mouse hepatocytes. Incubation of chloroform (12 mM) with hepatocytes resulted in cell death (alanine aminotransferase release and propidium iodide fluorescence). Chloroform had volatilized from the incubation and glutathione was depleted by 1 h; however, toxicity was not significantly different between control and chloroform-incubated cells. Hepatocytes were washed and reincubated in fresh media at 1 h. Subsequent reincubation of chloroform-treated hepatocytes resulted in significant toxicity at 3–5 h. Inclusion of the MPT inhibitor cyclosporine A or the antioxidant N-acetylcysteine (NAC) in the reincubation media at 1 h prevented toxicity. Confocal microscopy studies with the dye calcein AM indicated MPT that was blocked by cyclosporine A or NAC. Fluorescence microscopy studies utilizing JC-1 indicated loss of mitochondrial membrane potential, which was also blocked by cyclosporine A or NAC. Dichlorofluorescein fluorescence increased during the reincubation phase, indicating increased oxidative stress, and the increase was blocked by cyclosporine A. Since oxidative stress may occur by peroxynitrite, its role in toxicity was examined. Either of the nitric oxide synthase inhibitors N G-methyl-L-arginine (L-NMMA) and 7-nitroindazole (7-NI) at 1 h blocked toxicity. Western blot analysis of hepatocytes for 3-nitrotyrosine in proteins, a biomarker of peroxynitrite, indicated one major nitrated protein at 81 kD. Nitration of this protein was inhibited by cyclosporine A, L-NMMA, 7-NI, or NAC. The data indicate that chloroform-induced cell death occurs in two phases: a metabolic phase characterized by glutathione depletion, and an oxidative phase characterized by MPT and protein nitration.

A. S. Burke was supported by a grant from the National Institute of Environmental Health Science (T-32 ES010952) (PI: J. A. Hinson). The use of the facilities in the University of Arkansas for Medical Sciences Digital and Confocal Microscopy Laboratory as supported by NIH grant 2 P20 RR 16460 (PI: L. Cornett, INBRE, Partnerships for Biomedical Research in Arkansas) is acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.