345
Views
64
CrossRef citations to date
0
Altmetric
Original Articles

Gene Expression of GST and CYP330A1 in Lipid-Rich and Lipid-Poor Female Calanus finmarchicus (Copepoda: Crustacea) Exposed to Dispersed Oil

, , , , &
Pages 131-139 | Published online: 30 Jan 2009
 

Abstract

The copepod Calanus finmarchicus is a marine ecological key species in the Northern Atlantic food web. This species was exposed to an artificially weathered North Sea oil dispersion (oil droplets and water-soluble fractions [WSF]) and a filtered dispersion (containing only WSF) in serial dilution. Female copepods were divided into lipid-rich and lipid-poor for each exposure followed by gene expression analyses of glutathione S-transferase (GST) and cytochrome P-450 330A1 (CYP330A1). Lipid-rich copepods exhibited elevated transcription of GST and reduced transcription of CYP330A1 after exposure to both dispersed oil and WSF. In contrast, lipid-poor copepods exhibited increased transcription of CYP330A1 following exposure to WSF but not the dispersion. Data suggested that small lipid storage promotes increased bioavailability of accumulated oil compounds. Variations in response in CYP330A1 gene expression indicate that oil constituents may exert different modes of toxic action in copepods depending on their reproductive stages. The contribution of oil droplets to the observed effects seemed to be low as GST gene expression was similar after exposure to both dispersed oil and WSF. However, feeding rate in copepods exposed to dispersed oil was reduced, and this may have decreased the uptake of oil constituents via the diet. Although quantitatively higher mortality was observed in copepods exposed to the highest dispersion levels, this may result from smothering of animals by oil droplets. Furthermore, increasing dilution of both the dispersions and the WSF altered their distributions and chemical composition, which may influence the bioavailability of spilled crude oil to pelagic marine organisms.

This project was financed through strategic internal funding at SINTEF Materials and Chemistry (SEP-2007), the Research Council of Norway (170429/S40), and by funding from StatoilHydro ASA and ENI Norge. The establishment of the Calanus finmarchicus culture at SINTEF/NTNU Sealab was financed by the Research Council of Norway (157687/S40).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.