208
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

The Physicochemistry and Toxicology of CFA Particles

, , , &
Pages 341-354 | Published online: 12 Feb 2010
 

Abstract

The term “technogenic particles” is used to describe airborne particulate matter (PM) produced during industrial processes. The most common of these is “fly ash” produced during combustion of solid and liquid fossil fuels. Coal fly ash is derived from the mineral and metal contaminants within coal in which particles (1) are distinctly spherical in shape, (2) are composed of 60–90% glass, and (3) often contain a range of contaminant metals. In addition, particles may contain recrystallized minerals, mainly quartz, mullite, and hematite; both quartz and mullite are recognized respiratory hazards. Fly ash particles from both UK and Chinese coal-burning power stations were characterized by field emission-scanning electron microscopy (morphology and size), x-ray diffraction (crystallinity and minerals), and inductively coupled plasma–mass spectroscopy (elemental composition). PM10 samples were separated from bulk fly ash by a dry dust separator system. The plasmid scission assay (PSA) was used to measure damage produced by fly ash to plasmid bacteriophage ΦX174 RF DNA. The supercoiled DNA was either damaged or severely damaged by reactive oxygen species (ROS) generated by the fly ash at different concentrations. Geochemical analyses confirmed that the fly ash particles are predominantly glass, with a minor component of the minerals quartz, hematite, and mullite. Fly ash particles also contained a range of metals contaminants; however, these were mostly bound into the glass with only a small proportion potentially bioaccessible. PSA data showed that fly ash exhibited significant oxidative capacity when compared to negative control (MB H2O), indicating that ROS are likely to be the driving force underlying fly ash bioreactivity.

Acknowledgments

We thank the anonymous coal-burning power stations for their generous donations of fly ash for this research. We thank Earth Sciences B.Sc. project students Kirsty Sweeny and Nina Christopherson. We thank technicians Iain McDonald and Tony Oldroyd (Fluxy and ICP-MS), and Peter Fisher (FE-SEM). We thank Ph.D. student Lata Koshy for advice and training on the plasmid scission assay.

Notes

Patrick Brown, Kelly BéruBé, Anna Wlodarczyk, and Shao Longyi contributed equally to this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.