281
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Toxicity of 7-Ketocholesterol on Lethality, Growth, Reproduction, and Germline Apoptosis in the Nematode Caenorhabditis elegans

, , , &
Pages 716-723 | Received 25 Jan 2014, Accepted 26 Jan 2014, Published online: 01 May 2014
 

Abstract

7-Ketocholesterol is one of the most abundant cholesterol oxides, and is known to be cytotoxic to various types of cultured mammalian cells; however, little is known regarding its effects in vivo. With the use of the nematode Caenorhabditis elegans as model organism, in vivo toxicity of 7-ketocholesterol was investigated. The aim of the study was to examine the effects on life span, as well as short-term effects on reproduction, thermotolerance, germline apoptosis, and reactive oxygen species (ROS) generation resulting from C. elegans exposure to 7-ketocholesterol at concentrations ranging from 0 to 200 μg/ml. Results indicated that 7-ketocholesterol reduced reproductive capacity, shortened the life span in a concentration-dependent manner, and impaired thermotolerance of the adult nematode. 7-Ketocholesterol also induced germline apoptotic cell death and increased ROS generation in adult worms. Thus, the model organism C. elegans is recommended for assessment of the safety and bioactivity of cholesterol oxides.

FUNDING

The authors thank the National Natural Science Foundation of China (number 21072002), for financial support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.