373
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Maternal Exposure to Cadmium Oxide Nanoparticles During Pregnancy on Maternal and Offspring Kidney Injury Markers Using a Murine Model

, , , &
Pages 711-724 | Received 19 Dec 2014, Accepted 03 Mar 2015, Published online: 19 Jun 2015
 

Abstract

Nanoparticles (NP) are pervasive in many areas of modern life, with little known about their potential toxicities. One commercially important NP is cadmium oxide (CdO), which is used to synthesize other Cd-containing NP, such as quantum dots. Cadmium (Cd) is a well-known nephrotoxicant, but the nephrotoxic potential of CdO NP remains unknown, particularly when exposure occurs during pregnancy. Therefore, pregnant CD-1 mice were used to examine the effects of inhaled CdO NP (230 μg CdO NP/m3) on maternal and neonatal renal function by examining urinary creatinine and urinary biomarkers of kidney injury, including kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL). Inhalation of CdO NP by dams produced a fivefold increase in urinary Kim-1 with no marked effect on urinary creatinine levels. Kim-1 mRNA expression peaked by gestational day (GD) 10.5, and NGAL expression increased from GD 10.5 to 17.5. In addition, histological analyses revealed proximal tubular pathology at GD 10.5. Neonatal Kim-1 mRNA expression rose between postnatal days (PND) 7 and 14, with mammary glands/milk being the apparent source of Cd for offspring. These studies demonstrate that, similar to what is seen with other Cd forms, Cd associated with inhaled CdO NP results in renal injury to both directly exposed dam and offspring. As commercial uses for nanotechnology continue to expand throughout the world, risks for unintentional exposure in the workplace increase. Given the large number of women in the industrial workforce, care needs to be taken to protect these already vulnerable populations.

Additional information

Funding

Supported by grant numbers R01-ES017427, T32-ES007324, and NYU NIEHS Center grant ES000260 from the National Institutes of Environmental Health Sciences.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.