224
Views
16
CrossRef citations to date
0
Altmetric
Original Article

4-Hydroxynonenal: A Superior Oxidative Biomarker Compared to Malondialdehyde and Carbonyl Content Induced by Carbon Tetrachloride in Rats

, , , &
Pages 1051-1062 | Published online: 07 Aug 2015
 

Abstract

Carbon tetrachloride (CCl4), a halogenated substance that generates free radical species during metabolism in vivo, induces hepatotoxicity, produces oxidative DNA damage, and increased levels of protein carbonyl, malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE). In this study, Sprague-Dawley rats received single or repeated ip injections of carbon tetrachloride (CCl4), and formation and persistence of carbonyls, MDA, and 4-HNE in plasma were measured using gas chromatography–mass spectrometry. After a single injection of 500 mg/kg CCl4 the in vivo half-lives of MDA and carbonyl content were 1.5 d and 2 d, respectively, while that of 4-HNE was approximately 10 d. Treatment with CCl4 (50, 100, 500, or 1000 mg/kg) dose-dependently increased these oxidative biomarkers in blood. However, formation of protein carbonyls and MDA was less sensitive than 4-HNE to CCl4. Levels of serum glutamic oxaloacetic transaminase (SGOT) and glutamic pyruvic transaminase (SGPT) (hepatotoxicity markers) rose with CCl4 doses. After a single injection (500 mg/kg), the peak level of SGOT was observed after 8 h but SGPT after 24 h. Overall, 4-HNE was more dose-sensitive and showed greater formation subchronically than other biomarkers. Multiple ip treatments with 300 mg CCl4 /kg (d 1, 3, 6, 10, 14, and 21) demonstrated that 4-HNE formation was highest (18-fold, peak/control) and subchronic up to d 21 (last treatment day), unlike other biomarkers. Data suggest that 4-HNE, MDA, and carbonyl content may be useful oxidative biomarkers for exposure to free radical generating halogenated compounds. However, 4-HNE appears to be a more sensitive and sustainable biomarker for toxicological and risk assessments.

Additional information

Funding

This research was supported by a grant (14172MFDS975) from the Ministry of Food and Drug Safety (MFDS) in 2014.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.