186
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Effect of genetic strain and gender on age-related changes in body composition of the laboratory rat

, , &
Pages 376-392 | Received 03 Feb 2016, Accepted 18 Mar 2016, Published online: 07 Jun 2016
 

ABSTRACT

Body fat serves as a storage compartment for lipophilic pollutants and affects the pharmacokinetics of many toxic chemicals. Understanding how body fat varies with gender, strain, and age may be essential for development of experimental models to study mechanisms of toxicity. Nuclear magnetic resonance (NMR)-based analysis serves as a noninvasive means of assessing proportions of fat, lean, and fluid in rodents over their lifetime. The aim of this study was to track changes in body composition of male and female Long-Evans (LE), Sprague-Dawley (SD), Fischer (F334), and Brown Norway (BN) rats from postweaning over a >2-yr period. Percent fat of preweaned LE and SD rats was markedly higher compared to the other strains. LE and SD strains displayed marked increases in body fat from weaning to 8 mo of age. Postweaned F344 male and females showed relatively low levels of percent fat; however, at 2 yr of age percent fat of females was equal to that of SD and LE in females. BN rats showed the highest levels of lean tissue and lowest levels of fat. Percent fat of the BN strain rose at the slowest rate as they aged. Percent fluid was consistently higher in males for all strains. Females tended to have higher percent fat than males in LE, SD, and F344 strains. Assessing changes in body fat as well as lean and fluid of various strains of male and female rats over their lifetime may prove useful in many research endeavors, including pharmacokinetics of lipophilic toxicants, mechanisms underlying obesity, and metabolic disorders.

Acknowledgments

We thank Drs. Samantha Snow and Urmila Kodavanti for their review of the article.

Disclaimer

The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the agency, nor does the mention of trade names of commercial products constitute endorsement or recommendation for use.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.