439
Views
32
CrossRef citations to date
0
Altmetric
Articles

Neurotoxicity of alkylated polycyclic aromatic compounds in human neuroblastoma cells

, &
Pages 285-300 | Received 03 Feb 2017, Accepted 30 Mar 2017, Published online: 09 Jun 2017
 

ABSTRACT

Polycyclic aromatic compounds (PAC) are ubiquitous environmental pollutants originating from incomplete combustion processes. While the toxicity of parent PAC such as benzo[a]pyrene (BaP) is well characterized, effects of other alkyl-PAC dibenzothiophene (DBT) and retene (Ret) are not well established. The aim of this study was to examine the underlying relative neurotoxic mechanisms attributed to BaP (parent PAH), DBT and Ret (alkyl-PACs) using human neuroblastoma SK-N-SH cells. The lethal concentrations (LC10 and LC20) were found at approximately 10 µM and 40 µM, respectively after 24-h exposure of SK-N-SH cells. It was hypothesized that PAC trigger reactive oxygen species (ROS) production, leading to activation of apoptotic signaling pathways. Differentiated neuronal cells were treated with three compounds at (0.5–40 µM) for 24 h. There was a significant concentration-dependent increase in levels of ROS, even at sub-lethal levels of 1 µM Ret. The mitochondrial membrane potential (MMP) was significantly decreased. Real-time RT-PCR results showed up-regulation of pro-apoptotic genes and down-regulation of antioxidative genes expression in BaP-, DBT-, and Ret-treated SK-N-SH cells. Cytochrome c protein levels and lipid peroxidation (LPO) were also significantly elevated in a concentration-related manner. Data demonstrated that BaP-, DBT-, or Ret-induced neuronal cell damage involved oxidative stress generation through mitochondria-mediated apoptosis pathway. Alkyl-PAC also exhibited higher potency in ROS induction and reduction of MMP than parent PAC. These findings may be important for environmental risk assessment attributed to exposure to PAC.

Declaration of interest

The authors declare that there are no conflicts of interest.

Funding

To the CREATE-REACT of the Natural Sciences and Engineering Research Council of Canada for a scholarship to Sailendra Nath Sarma and to the Canada Research Chair Program for financial support to HMC.

Additional information

Funding

To the CREATE-REACT of the Natural Sciences and Engineering Research Council of Canada for a scholarship to Sailendra Nath Sarma and to the Canada Research Chair Program for financial support to HMC.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.