261
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Cytochrome P450 1B1 promotes cancer cell survival via specificity protein 1 (Sp1)-mediated suppression of death receptor 4

, , , , &
Pages 278-287 | Published online: 23 Feb 2018
 

ABSTRACT

Cytochrome P450 1B1 (CYP1B1), a well-known oncogene, has garnered wide attention because of its tumor-specific expression pattern and actions as a carcinogenic factor. Although CYP1B1 might play a crucial role in carcinogenesis, the detailed molecular mechanisms underlying oncogenic involvement in cancer development remain unclear. The present study investigated the manner in which CYP1B1 promotes survival of various cancer cells. Treatment with 2,2ˊ,4,6ˊ-tetramethoxystilbene (TMS), a specific CYP1B1 inhibitor, significantly inhibited cell viability in human breast cancer and leukemia cell lines, including MCF-7, MDA-MB-231, HL-60, and U937 cells. In order to characterize the cellular functions of CYP1B1 associated with cancer cell survival, the relationship between this oncogene and death receptor 4 (DR4) was determined. Following induction or inhibition of CYP1B1, mRNA and protein expression levels of DR4 were measured, and this oncogene was found to significantly repress DR4 mRNA and protein expression. Further, the suppression of DR4 by CYP1B1 was restored with 5-aza-2ˊ-deoxycytidine (5-aza-dC), a DNA methyltransferase inhibitor, indicating that DNA methylation may be involved in CYP1B1-mediated DR4 inhibition. Methylation-specific polymerase chain reaction (PCR) in CYP1B1-overexpressed HL-60 cells revealed that this oncogene induced hypermethylation on DR4 promoter. Interestingly, data showed that DR4 suppression of CYP1B1 is mediated by the DNA-binding ability of specificity protein 1 (Sp1). These findings suggest that CYP1B1 promotes cancer cell survival through involvement of DNA methylation-mediated DR4 inhibition and that Sp1 may act as key mediator required for oncogenic action.

Additional information

Funding

This research was supported by a National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) (NRF-2015R1A2A2A01003865 and NRF-2015R1A5A1008958).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.