128
Views
3
CrossRef citations to date
0
Altmetric
Articles

Assessment of skin sensitizing potential of metals with β-galactosidase-expressing E. coli culture system

, , &
Pages 879-889 | Published online: 11 Sep 2019
 

ABSTRACT

It has been a challenge to develop in vitro alternative test methods for accurate prediction of metallic products which may exert skin sensitization, as several test methods adopted by OECD were relatively ineffective in assessing the capacity for metallic compounds to exert sensitizing reactions, compared with organic test substances. Based upon these findings, a system that incorporates β-galactosidase producing E. coli cultures was tested for its predictive capacity to well-known metallic sensitizers. In this system, E. coli cells were incubated with metal salts at various concentrations and β-galactosidase suppression by each test metal was determined. Fourteen local lymph node assay (LLNA) categorized metal salts were examined. Although color interference from metal salts was minimal, a fluorometric detection system was also employed using 4-methylumbelliferyl galactopyranoside as a substrate for β-galactosidase to avoid the color interference, concomitantly with the original UV-spectrometric method. Data demonstrated that two detection methods were comparable and complementary. In addition, most of the metallic sensitizers were correctly identified at 0.6 and 0.8 mM concentrations. Despite the lower specificity obtained in the current study and small number of substances tested, the developed method appears to be a relatively simple and effective in vitro method for detecting metallic sensitizers. When 61 chemicals tested in the β-galactosidase producing E. coli cultures including the present study were collectively analyzed, the prediction capacity was as high as other OECD-adopted tests: 95.6% of sensitivity, 66.7% of specificity, and 88.5% of accuracy. It is important to emphasize that animals or mammalian cell cultures were not required in the current method, which are in accordance with the EU guidelines on restricted or banned animal testing.

Acknowledgments

This research was supported by grants from National Research Foundation, Korea (NRF-2017RIDIA3B04033313) and Yeungnam University (2019-A-380-154).

Additional information

Funding

This work was supported by the National Research Foundation of Korea [NRF-2017RIDIA3B04033313];Yeungnam University [2019-A-380-154].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.