228
Views
9
CrossRef citations to date
0
Altmetric
Articles

Effects of radon on miR-34a–induced apoptosis in human bronchial epithelial BEAS-2B cells

, , , , , & ORCID Icon show all
Pages 913-919 | Published online: 08 Sep 2019
 

ABSTRACT

Radon exposure is known to be the second most frequent cause followed by tobacco exposure for lung cancer development. In lung cancer development, microRNAs (miRNAs) play an important role in regulating various target genes associated with this disease. It is well-established that apoptosis is involved in the elimination of cancer cells. However, the mechanisms underlying chronic radon exposure induced miRNAs regulation attributed to result in carcinogenesis and subsequent activation of apoptosis is not completely understood. The aim of this study was thus to examine chronic low level radon exposure on lung miRNAs as a model for carcinogenesis induction and subsequent activation of apoptosis using human bronchial epithelial BEAS-2B cells. Quantitative real-time PCR (qRT-PCR) and flow cytometry were used to determine the miR-34a gene expression and apoptotic rate in BEAS-2B cells. Data demonstrated that chronic radon exposure up-regulated the expressions of miR-34a and enhanced cellular apoptosis in a time-dependent manner. Western blot analysis demonstrated that overexpression of the gene miR-34a enhanced apoptotic rate and elevated proapoptotic Bax protein expression accompanied by decreased protein expressions of antiapoptotic Bcl-2 and PARP-1. It is noteworthy that the apoptotic rate was elevated in BEAS-2B cells transfected with mi-R34a mimic but reduced in mi-R34a inhibitor-transfected cells. Evidence thus indicates that chronic exposure to radon produced up-regulation of miR-34a gene which subsequently enhanced apoptosis in BEAS-2B cells. The observed consequences following chronic radon exposure leading to carcinogenesis appear to involve activation of miR-34a gene.

Acknowledgments

This study is supported by National Science Foundation of China (NSFC) research grant (No. 81573178, 81673203 and 81803271).

Conflict Interest Statement

The authors declare that there is no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.