216
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of soil particle size and extraction method on the oral bioaccessibility of arsenic

, , , , , ORCID Icon & show all
Pages 538-552 | Published online: 10 Mar 2022
 

ABSTRACT

Recent findings indicate that incidental ingestion of soil by humans primarily involves soil particles <150 µm, rather than <250 µm-sized fraction previously used for most oral bioaccessibility and bioavailability studies. It was postulated that a greater soil surface area in the finer fraction (<150 versus <250 µm) might increase oral bioaccessibility of arsenic (As) in soil. Bioaccessibility and concentrations of As were compared in <150 and <250 µm fractions of 18 soil samples from a variety of arsenic-contaminated sites. The two methods used to measure bioaccessibility were compared – EPA Method 1340 and the California Arsenic Bioaccessibility (CAB) method. Arsenic concentrations were nearly the same or higher in the <150 fraction compared with <250 µm. EPA Method 1340 and the CAB method presented significantly different bioaccessibility results, as well as estimated relative oral bioavailability (RBA) based upon algorithms specific to the methods, but there was no marked difference for <150 and <250 µm soil fractions within either method. When compared with RBA determined previously for these soil samples in vivo in non-human primates, EPA Method 1340 was generally more predictive than the CAB method. Data suggest that soil- or site-specific factors control bioaccessibility under either method and that the test method selected is more important than the particle size fraction (<150 or <250) in using these in vitro methods to predict As RBA for use in risk assessment.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Notes

1. The quoted text here is from the study by Whitacre et al., which provides the technical basis for the CAB Method.

Additional information

Funding

The author(s) reported that there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 482.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.