123
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement of Hydrocarbon Removal in a Clay and Drilling-Waste Polluted Soil

, , , , &
Pages 417-428 | Published online: 16 Aug 2006
 

The application of biological processes in restoring oil polluted sites is growing due to their efficiency in removing different classes of pollutants. The aim of this study was to determine the ability of microorganisms present in a drilling-waste polluted soil (36,200 mg TPH kg−1 soil) to remove weathered hydrocarbons under stimulated and non-stimulated soil conditions. The hypothesis under study was whether petroleum hydrocarbons removal could be enhanced by manipulating C/N ratio, water content and addition of three agroindustrial wastes. A Box-Behnken design was employed to evaluate the effect of each variable. Results demonstrated that, for orange peels and banana trunk treatments, the variable with the largest effect (p < 0.01) on hydrocarbon removal was the C/N ratio, indicating that higher ratio (100/3) improved removal (79.5–82%). The largest effect (p < 0.001) on hydrocarbon removal for pineapple wastes was observed with higher water content (60%) achieving the highest removal (89%). After 90 days of experimentation, the type of agricultural waste and the agricultural waste/soil ratio were not statistically significant in any treatment. However, their addition was important relative to non-stimulated soil, which showed a hydrocarbon removal of 17%. Data reported in this study showed the application of bioremediation in clay and drilling waste-polluted soils.

Acknowledgments

The authors thank Salvador Villa for technical assistance. This work was supported by Grant “Atenuación Natural de Suelos Contaminados” from Instituto Mexicano del Petróleo.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.