242
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced Microbial Removal of Pyrene in Soils in the Presence of Earthworms

, , , &
Pages 617-630 | Published online: 29 Aug 2011
 

Abstract

Microbial degradation of pyrene was studied in soils in the presence and absence of earthworms (Eisenia foetida) to demonstrate an integrated innovative strategy for bioremediation of sites lightly polluted by polycyclic aromatic hydrocarbons. Desorption of pyrene and soil microbial respiration were measured to elucidate the mechanism of enhanced microbial degradation. The results showed that both soil properties and contact time could influence pyrene biodegradation. The introduction of E. foetida enhanced pyrene removal significantly both in freshly spiked and aged soils. The percentage pyrene removal in the presence of E. foetida was 45.5–91.0% after 14 d of incubation, which were 2.1 to 2.8 times greater than those without the worms. The enhanced pyrene removal is attributed to both enhanced microbial degradation and uptake by the worms. Microbial degradation of pyrene increased by 1.2 to 1.6 times in the presence of the worms. Overall, the introduction of live worms could improve both pyrene bioavailability and microbial activity, which leads to enhanced microbial degradation of pyrene.

Acknowledgments

This research was funded by the National Natural Science Foundation of China (20737002) and Ministry of Science and Technology (2008AA06Z333). We are very grateful to Prof. Zhang Qingmin in Nankai University for kindly providing the tested microorganism.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.