128
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Contamination of Paddy Soil by Endocrine-Disrupting Chemicals Affects Soil Microbe Abundance and Diversity

, , , , , , & show all
Pages 510-520 | Published online: 03 May 2013
 

Abstract

We describe the effect on the population of  Eubacteria and Archaea species of adding the endocrine-disrupting chemicals (EDCs) nonylphenol (NP) or dibutylphthalate (DBP) to a typical paddy soil. Fluorescence in-situ hybridization was used to discriminate between the two phyla, and denaturing gradient gel electrophoresis (DGGE) of an amplified fragment of the 16S rRNA locus was used to profile the species present. The population of both Eubacteria and Archaea species was reduced by the presence of NP or DBP, and the deleterious effect was greater for the Eubacteria. The DGGE profiles were used to assess the species diversity in the polluted and non-polluted soil samples. This showed that DBP was less damaging than NP50. It was clear that EDCs can significantly affect paddy soil microbial diversity, both with respect to population size and species representation.

Acknowledgement

This project was partially supported by Central Foundation of Agricultural Science and Technology Production (2010E00079) and Key Scientific Research Base of Guangdong Province (2009A060800026). We would like to thank Ruiping Jiang and Ping Li for their assistance with field sampling and chemical analysis.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.