172
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Naproxen Adsorption-Desorption in a Sandy Aquifer Matrix: Characterisation of Hysteretic Behavior at Two Different Temperature Values

, , &
Pages 641-653 | Published online: 06 May 2013
 

Abstract

Adsorption/desorption processes (sorption isotherms) of Naproxen in a sandy aquifer matrix sediment were investigated using batch tests to compare Naproxen sorption behavior at 15°C and 25°C. Both temperatures are representative of the aquifer media and environmental conditions. Adsorption was well described by linear isotherms with low sorption affinity to aquifer material (Kd of 0.4 μg kg−1) at both temperatures (15°C and 25°C). Desorption isotherm coefficients at 15°C and 25°C were 5.0 and 4.9, respectively. Naproxen hysteresis indices were between 9.98 and 10.8, indicating that a Naproxen fraction may be irreversibly fixed in the aquifer media, being higher at 25°C (10.88) compared to 15°C, showing a decreasing trend with increasing compound concentration at 15°C. The low sorption of Naproxen leads to potential leaching to groundwater if present in irrigation water, and its prevalence in an aquifer media when directly injected in wells for groundwater recharge.

Acknowledgments

This work was carried out within the framework of the projects Consolider-Tragua and CGL2010-22168-C03-02, financed by the Ministry of Science and Innovation (Spain). The thorough and constructive reviews of anonymous reviewers have greatly improved the quality of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.