448
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Adsorption of PAHs on the Sediments from the Yellow River Delta as a Function of Particle Size and Salinity

, , , &
Pages 103-115 | Published online: 07 Jan 2015
 

Abstract

In a seawater environment, the particle size of sediment and salinity play an important role in the adsorption behaviors of polycyclic aromatic hydrocarbons (PAHs) on sediment. In this study, batch adsorption experiments were carried out with the sediments from the Yellow River Delta (YRD) to explore the effect of particle size and salinity on the adsorption behaviors of phenanthrene (Phe), fluoranthene (Fla), and pyrene (Pyr). Adsorption isotherms of PAHs on different-sized sediments can be described by a Freundlich model with the correlation coefficients ranging from 0.96 to 0.99. The adsorption capacity of PAHs was in reverse proportion to the particle size of the sediments and in direct proportion to salinity. The sediments with smaller particle size possessed higher content of aromatic and fat components, which had strong adsorption capacity toward PAHs. Salinity influenced the adsorption behaviors of PAHs by changing the solubility of PAHs and the physicochemical properties of the sediments. The salting-out constants of Phe, Fla, and Pyr were in the range of 0.292 to 0.296, 0.230 to 0.289, and 0.293 to 0.307 l/mol, respectively. These research findings are of importance to an assessment of the fate and transport of PAHs in seawater-sediment systems.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.