111
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Copper Bioavailability to Beans (Phaseolus vulgaris) in Long-Term Cu-Contaminated Soils, Uncontaminated Soils, and Recently Cu-Spiked Soils

, &
Pages 116-128 | Published online: 07 Jan 2015
 

Abstract

Copper solubility and its bioavailability to Phaseolus vulgaris in long-term copper-contaminated soils, uncontaminated soils, and copper-spiked soils were studied. The role of plant factors, total copper load in soils, and/or the aging effect on the uptake of copper was explored so as to assess health risks through contamination of the food chain associated with growing the crop on such soils. Contaminated soils and clean soils were collected from coffee-growing fields in Kilimanjaro and Arusha, Tanzania. Two bean seeds were sown per pot, replicated three times, and arranged in a randomized design in a glass house. Copper spiking significantly increased extractable copper, as expected. For all of the treatments except for the Mwanga and Arumeru control soils, the addition of CuSO4 did not significantly increase the humic-acid-bound copper, but it significantly increased the fulvic-acid-bound copper (p = 0.05). Moshi soils had significantly higher concentrations of copper in the bean shoots than was the case with other treatments (p = 0.05). For the respective soil types, there was no significant difference in the concentrations of copper in bean leaves between spiked and unspiked treatments (p = 0.05). Bean shoots did not accumulate copper beyond the normal concentrations.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.