1,039
Views
62
CrossRef citations to date
0
Altmetric
Original Articles

The Remediation of Chromium (VI)-Contaminated Soils Using Microbial Fuel Cells

, &
Pages 1-12 | Published online: 08 Feb 2016
 

ABSTRACT

Chromium (VI) is a priority pollutant in soil and water and poses serious threats to the environment. Microbial fuel cells (MFCs), as a sustainable technology, have been applied to treat heavy-metal-contaminated wastewater. To study MFC application in soil remediation, red clay soil and fluvo-aquic soil were spiked with Cr(VI) and packed into a cathode chamber of MFCs, which were then operated at external resistances of 100 and 1000 Ω for 16 days, with open circuit condition as a control treatment. After the operation, the concentration of dissolved Cr(VI) in supernatant and total Cr(VI) in soil was decreased. Soil type and external resistance significantly affected the current, removal efficiency of Cr(VI), and cathode efficiency. Reducing external resistance improved the removal efficiency. The red soil generated a higher current of MFCs, but showed a lower removal efficiency and cathode efficiency than fluvo-aquic soil, implying that the red soil may contain more electron acceptors that competed with Cr(VI) reduction reaction. Our study demonstrated that MFC-based technology has the potential to remediate Cr(VI)-contaminated soil; the efficiency varied between soil types and can be improved with high current.

Funding

This research was supported financially by the National Natural Science Foundation of China (21322703, 41471260, and 41301260).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.