270
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Column Flushing of Phenanthrene and Copper (II) Co-Contaminants from Sandy Soil Using Tween 80 and Citric Acid

, , &
Pages 50-63 | Published online: 08 Feb 2016
 

ABSTRACT

The clean-up of soils co-contaminated with heavy metals and organic compounds is a contemporary issue of remediation efforts. Column flushing was conducted to investigate the performance of nonionic surfactant and/or organic acid solutions, 4000 mg/L Tween 80 (TW80), and/or 0.04 mol/L citric acid (CA), to enhance the simultaneous removal of phenanthrene and copper (II) from the co-contaminated sandy soil. The flushing effects were compared when TW80, CA, TW80 after CA (CA/TW80), CA after TW80 (TW80/CA), and a mixture of TW80 and CA (TW80-CA) were used as flushing agents. The maximum concentrations of phenanthrene in effluent solutions occurred at 3.3, 4.7, 5.3, and 15.3 h during TW80, TW80/CA, TW80-CA, and CA/TW80 flushing and those of copper (II) at 2.7, 3.3, 3.3, and 14.0 h during CA, CA/TW80, TW80-CA, and TW80/CA flushing, respectively. Phenanthrene was mainly desorbed through partitioning into TW80 micelles in aqueous phase while copper (II) was effectively removed through complexation with CA. The removal efficiencies were up to 81.5%, 5.9%, 99.9%, 91.6%, and 99.8% for phenanthrene, and 0.1%, 76.7%, 85.7%, 78.1%, and 84.4% for copper (II) by TW80, CA, TW80/CA, TW80-CA, and CA/TW80. However, it took a long time to use TW80/CA and CA/TW80 to clean phenanthrene and copper (II) efficiently. The overall removal efficiencies of contaminants in the soil column increased with flushing time in the Sigmoidal Model. The results indicated that a combination of TW80 and CA has potential for in situ clean-up of heavy metals and polycyclic aromatic hydrocarbons (PAHs) from co-contaminated soils.

Funding

This work was financially supported by the National Natural Science Foundation of China (41261077, 20577018) and the Natural Science Foundation of Gansu Province (1010RJZA070).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.