212
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Control of Heavy-duty Gas Turbine Plants for Parallel Operation Using Soft Computing Techniques

, &
Pages 1275-1287 | Received 07 Jan 2009, Accepted 09 Apr 2009, Published online: 19 Oct 2009
 

Abstract

Gas turbine generators, normally used in isolated operation, require an effective control and design for their parallel operation. Otherwise, the load variations and set-point variations may cause severe stability problems. Soft computing techniques, such as genetic algorithms, artificial neural networks, and fuzzy logic, have been utilized for developing a controller for a gas turbine plant. The proportional-integral-derivative controller is used to control the gas turbine plant because of its versatility, high reliability, and ease of operation. For better performance, the gains of the proportional-integral-derivative controller have been tuned using the Ziegler–Nichols method and genetic algorithm. The artificial neural network and fuzzy controllers are developed, and the performance is compared with the conventional proportional-integral-derivative controller. The results show that the optimal time domain performance of the system can be achieved with the fuzzy logic controller. The fuzzy logic controller removes the steady-state error in less time with no overshoot and oscillation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 412.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.