119
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Design and Implementation of a Sliding Mode Controller Using a Gaussian Radial Basis Function Neural Network Estimator for a Synchronous Reluctance Motor Speed Drive

, &
Pages 548-562 | Received 28 Jan 2010, Accepted 28 Aug 2010, Published online: 08 Apr 2011
 

Abstract

This article presents a sliding mode control using a Gaussian radial basis function neural network speed control design for robust stabilization and disturbance rejection of the synchronous reluctance motor. In the conventional sliding mode control design, it is assumed that the upper boundary of parameter variations and external disturbances is known and the sign function is used. This causes high-frequency chattering and high gain. A new sliding mode controller using a Gaussian radial basis function neural network estimator is proposed for the synchronous reluctance motor. The proposed method utilizes the Lyapunov function candidate to guarantee convergence and to track the speed command of the synchronous reluctance motor asymptotically. The estimator of parameter variations and external disturbances is designed to estimate the lump unknown uncertainty value in real time. Experiments were conducted to validate the proposed method.

Acknowledgment

This work is supported by the National Science Council in Taiwan, Republic of China (grant NSC96-2221-E-224-089).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 412.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.