228
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Overcurrent Relay Coordination Optimization with Partial Differentiation Approach for the Validation of Coordination Violation

, &
Pages 933-947 | Received 19 Apr 2010, Accepted 02 Dec 2010, Published online: 29 Jun 2011
 

Abstract

Conventional optimization methods for approaching overcurrent relay settings focus on minimizing the operating time of total relays at maximum fault current to accelerate the fault clearance time. However, to judge whether the entire relay curve of each relay pair always meets the constraints of 0.2 or 0.3 sec to the object curve is rather difficult as the curves may have different slopes. Additionally, the coordination time at the closest position for the curves of a relay pair should be checked for coordination validation. Therefore, this work presents a novel partial differentiation approach method to ensure that the curves of overcurrent relay coordination do not intersect with each other and violate the coordination time interval. Relay setting values are normally plotted on the time-current plane to verify the closing or intersection between relay pairs. Thus, a computer program based on the partial differentiation approach is also developed to calculate the current value of the intersection or closest position. Furthermore, a case study involving an industrial power system demonstrates the effectiveness of the proposed method by validating the results of optimization relay coordination.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 412.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.