951
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A Joint Smart Generation Scheduling Approach for Wind Thermal Pumped Storage Systems

, , &
Pages 372-385 | Received 18 Sep 2013, Accepted 21 Oct 2013, Published online: 05 Feb 2014
 

Abstract

Energy storage plays a crucial role in the development of smart grids with high wind power penetration. Pumped storage is an effective solution for smoothing wind power fluctuation and reducing the operating cost for a wind thermal power system. The joint generation scheduling of power systems with mixed wind power, pumped storage, and thermal power is a challenging problem. This article proposes a novel two-stage generation scheduling approach for this problem in the contexts of smart grids. Through optimization, a day-ahead thermal unit commitment and pumped storage schedule are provided; then, in real time, the pumped storage schedule is updated to mitigate the wind power forecasting error and hence avoid the curtailment of wind power generation. The proposed model aims to reduce the total operating cost, accommodate uncertain wind power as much as possible, and smooth the output fluctuation faced by thermal units, while making the system operate in a relatively reliable way. A binary particle swarm optimization algorithm for solving the proposed model and the pumped storage schedule update algorithm are also presented. The model and algorithm are tested on a ten-generator test system.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 412.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.