64
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

Determination of Doped Concentrations in ICF Shells by X-Ray Equivalent Absorption

, , , , , , , , , , & show all
Pages 69-75 | Received 19 Jul 2016, Accepted 21 Dec 2016, Published online: 17 May 2017
 

Abstract

An X-ray equivalent absorption technique is developed to determine the doped concentrations of the inertial confinement fusion shells. Doped atoms in the shells are used to increase the opacity for radiation, to improve the absorptive capacity of the shell wall for X-ray, and to restrain the growth of hydromechanics instability. The doped concentrations in the shells are difficult to determine for the relatively thick shell wall and the spatial resolution. A novel model is proposed to determine the doped concentrations by a theory of X-ray equivalent absorption. The advantage of this model is that optical density (D) and the exposure curve [D = Φ(I)] of film plates are not necessary to calculate the doped concentrations. The model is validated with a thickness error of 2% by the polypropylene step wedge, the aluminum step wedge, and the polystyrene sphere. The error of results for doped concentration between this method and the energy-dispersive spectroscopy method is less than 0.1 at. %. The uncertainty also is analyzed and the combined expanded uncertainty is better than 0.2 at. % for the Ge-doped glow discharge polymer shell (k = 2).

Acknowledgments

This work is supported by a grant from the National Natural Science Funds of China (Grant No. 11504350).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 596.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.