62
Views
2
CrossRef citations to date
0
Altmetric
Technical Notes

Numerical Investigation on Cooling Performance of Breeding Zone in HCCR TBM

, , &
Pages 801-806 | Received 16 Sep 2016, Accepted 19 Jun 2017, Published online: 16 Aug 2017
 

Abstract

The helium cooled ceramic reflector (HCCR) test blanket module (TBM) has been designed to be installed in ITER and to verify the tritium production and the heat extraction in Korea. Lithium, beryllium, and graphite are used as a breeder, a neutron multiplier, and a reflector, respectively, which called as breeding zone (BZ) including cooling plate. The BZ was operated with the highest temperature in the TBM due to the nucler heating not only in breeding material but also structure. The margin to the allowable temperature for the breeder is very small in the current conceptual design of HCCR TBM. In the present study, feasible methods were investigated to lower the maximum temperature of the BZ. The thermal resistance and the effect of each factor were studied with a conventional CFD code, ANSYS-CFX v14.5. It is found that the thermal resistance related to the pebble beds layer was main factor to determine the breeder temperature, and the installation of the cooling fins could reduce the heat transfer resistance and lower the maximum temperature of breeder about 80°C.

Acknowledgments

This work was supported by R&D Program through National Fusion Research Institute (NFRI) funded by the Ministry of Science, ICT and Future Planning of the Republic of Korea (NFRI-IN1603).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 596.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.