206
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Design and Analysis of 140-Degree Miter Bend for High Power Electron Cyclotron Heating Transmission Lines

, , &
Pages 616-622 | Received 16 Sep 2016, Accepted 15 May 2017, Published online: 12 Sep 2017
 

Abstract

The ITER Electron Cyclotron Heating (ECH) system Transmission Lines (TL) require highly polished copper mirrors on miter bends (both 90° and 140°) to direct microwaves from their origin to the tokamak. This will result in substantial heat dissipation on the miter bends and mirrors and will require water cooling in order to achieve long pulse operation. Analysis and optimization of the cooling design for the 140° miter bend assembly used ANSYS® Multiphysics™ software to develop and verify the fluid, thermal, and structural behavior of the mirror and miter bend assembly. Simulation model choices included a thermo-mechanical model of the mirror-only, a thermo-mechanical model of the miter bend assembly, and a thermo-mechanical model of the mirror with coolant. These analyses revealed an optimal solution that uses a major-axis cooling channel configuration for the 140° miter bend to meet the design criteria (e.g. structural stresses, mirror deflection, vacuum seal, coolant temperatures and pressures).

Acknowledgments

This work is supported in part by US DOE Contract Number DE-AC05-00OR22725.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 596.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.