300
Views
11
CrossRef citations to date
0
Altmetric
Technical Papers

Initial Neutronics Investigation of a Liquid-Metal Plasma-Facing Fusion Nuclear Science Facility

ORCID Icon, , , &
Pages 429-437 | Received 14 Jun 2018, Accepted 26 Mar 2019, Published online: 06 May 2019
 

Abstract

The use of a liquid-metal (LM) plasma-facing component (LM-PFC) in fusion reactor designs has some advantages as well as some disadvantages as compared to traditional designs that use a solid plasma-facing wall. Neutronics analysis of these potential LM-PFC concepts is important in order to ensure that radiation limits are met and that system performance meets expectations.

A three-dimensional (3-D) neutronics analysis parametric study considering four LM first-wall (FW) candidates, (PbLi, Li, Sn, and SnLi) was performed with a thin (2.51-cm) LM-PFC design. The 3-D neutronics study used a fusion reactor based on the Fusion Energy Systems Study (FESS) Fusion Nuclear Science Facility (FNSF) (FESS-FNSF) that served as the baseline for comparison. FESS-FNSF is a deuterium-tritium–fueled tokamak with 518 MW of fusion power. A partially homogenized 3-D computer-aided-design model of the LM-PFC FNSF design was analyzed using the DAG-MCNP5 transport code.

The results show that all candidate LM designs are acceptable with 4% to 13% increases in the tritium breeding ratio compared to the baseline case. The peak displacements per atom at the FW decrease 2% to 15%. For all four LM designs examined, the magnet heating and fast neutron fluence are well below acceptable limits. Overall, the Li LM design is the best candidate from a neutronics perspective.

Acknowledgments

This work was funded in part by the U.S. Department of Energy Office of Fusion Energy Sciences under project DE-SC0017122.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 596.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.